Schroedinger, Erwin

demo

Due Fri, Sep 6, 2002 at 08:00
Physics 999: Demo Physics I

Set 8

CAPA ID: 1175

1. [1pt] The following are possible ways to express the quantity 0.391 (Give ALL correct answers, i.e., B, AC, BCD,...) Note: 3.45E-8 is a way you can enter the number 3.45×10^{-8} in most computers.
 A) $0.00391E+4$
 B) 39.1×10^{-1}
 C) $0.0391E+1$
 D) 0.0391×10^{2}
 E) $3.91E-1$
 F) $0.391E-2$

2. [1pt] Calculate, in cm, the perimeter of a rectangle with a length of 12.5 cm and a width of 44 mm.

3. [1pt] Calculate the perimeter of a rectangle with a length of 13.5 cm and a width of 41 mm. Enter units.

4. [1pt] Test your calculator skills by checking that $(5.50)^2$ equals 30.25 and that $(5.50)^3$ equals 166.38. Now, find the value of $(5.50)^2.51$.

5. [1pt] Reduce the fraction $64/288$ to its lowest terms. [If the result is 4/3, enter 4 (Answer1), and 3 (Answer2)]

6. [1pt] Calculate the volume of a spherical balloon which has a surface area of 0.0331 m^2.

7. [1pt] List the following in order of increasing lengths from shortest to longest. (If B is shortest, then A, then C, and D is longest, enter BACD)
 A) 40 mm
 B) 0.10 ft
 C) 0.060 m
 D) 1.00 in.

8. [2pt] Match each person with the most appropriate description. (If the first corresponds to B, and the next 6 to C, enter BCCCCC)

 1) Plato
 2) Sam Rayburn
 3) Alfred P. Sloan
 4) Percy Shelly
 5) Edgar Allen Poe
 6) Socrates
 7) Claude Monet

 A) Poet
 B) Philosopher
 C) Painter
 D) Politician
 E) Philanthropist

9. [1pt] The sequences for each of three fragments of DNA are shown below:
 fragment 1 = GGAGCGGGATCC
 fragment 2 = TAAAGCTCGGGAG
 fragment 3 = AGTCTTCCATAAA
 Assume that the target DNA sequence has 30 bases and reconstruct that DNA sequence.

10. [1pt] The nine elements of a 3x3 matrix are shown below.

 \[
 \begin{pmatrix}
 5 & 8 & -2 \\
 6 & -3 & 0 \\
 -5 & 5 & 8 \\
 \end{pmatrix}
 \]
 Evaluate the determinant of that matrix.

11. [2pt] In order to practice for a hammering-speed contest, a person purchases the following items:

 - **Hammer** 1 16.41
 - **Nails** 80 0.03
 - **Wood Blocks** 8 4.75
 - **Band Aids** 40 0.14

 Calculate the total cost, including a sales tax of 6.10%. (in $)

12. [1pt] A block is at rest on an inclined plane whose elevation can be varied. The angle of elevation θ is increased slowly from the horizontal, and when it reaches 36.7 degrees, the block begins to slide. Calculate the coefficient of static friction.

13. [1pt] The block reaches a speed of 3.31 m/s in a time of 1.30 s. Calculate the coefficient of kinetic friction.

14. [1pt] Using graphical methods, determine at $x = -4.0$ the value of the derivative of function $F(x)$ plotted in the graph below.

15. [3pt] A fisherman and his young niece are in a boat on a small pond. Both are wearing life jackets. The niece is holding a large floating helium filled balloon by a string. Consider each action below independently, and indicate whether the level of the water in the pond R-Rises, F-Falls, S-Stays the Same, C-Can’t tell. (If in the first the level Rises, in the second it Falls, and for the rest one Cannot tell, enter RFCCCC)

 A) The niece pops the balloon.
 B) The niece gets in the water, looses her grip on the string, letting the balloon escape upwards.
 C) The fisherman fills a glass with water from the pond and drinks it.
 D) The fisherman knocks the tackle box overboard and it sinks to the bottom.
 E) The fisherman lowers the anchor and it hangs vertically, one foot above the bottom of the pond.
 F) The fisherman lowers himself in the water and floats.

(Over)
16. [3pt] Match the appropriate letter on the diagram with each organelle in the sequence in which they are listed. (Example: If the first organelle corresponds to D on the diagram and the next to C, begin your answer with DC...)

1) Nucleus
2) Vacuole
3) Golgi Body
4) Cell Wall
5) Mitochondrion
6) Nucleolus
7) Tonoplast or Vacuolar Membrane
8) Plastid (Chloroplast, proplastid, ...)
9) Peroxisome
10) Endoplasmic Reticulum
11) Nuclear Envelope
12) Ribosomes
13) Cell or Plasma Membrane

17. [2pt] Vector \(\mathbf{C} = \mathbf{A} \times \mathbf{B} \), where
\[
\mathbf{A} = 13\mathbf{i} - 1\mathbf{j} - 17\mathbf{k} \\
\mathbf{B} = 25\mathbf{i} + 13\mathbf{j} - 17\mathbf{k}
\]
The unit vectors in the \(x \), \(y \) and \(z \) directions are \(\mathbf{i} \), \(\mathbf{j} \) and \(\mathbf{k} \) respectively. \(\mathbf{A} \) is a displacement and has units of \(m \), and \(\mathbf{B} \) is a force and has units of \(N \). Calculate vector \(\mathbf{C} \) and enter the numerical values of its \(x \), \(y \), and \(z \) components.

18. [5pt] Write a short essay (200 words or less) about how you spent your summer vacation.

19. [1pt] Consider the reaction of nitrous oxide \(\text{N}_2\text{O} \) with oxygen \(\text{O}_2 \) to form nitrogen dioxide \(\text{NO}_2 \):

\[
2\text{N}_2\text{O}_2 (g) + 3\text{O}_2(g) \rightarrow 4\text{NO}_2(g)
\]
A 5.0 liter vessel contains \(\text{N}_2\text{O} \) gas at 6.0 atm pressure. A second vessel, 5.0 L in volume contains oxygen at 3.0 atm pressure. Now suppose that the two vessels are connected by a pipe of negligible volume and the two gases mix and react to produce as much nitrogen dioxide as possible. Assume that the temperature remains constant. What is the pressure in the apparatus at the end of the reaction?

20. [1pt] Determine the integral from 0 to \(x \) of the function below:

\[
f(x) = 5.900x - 0.670x^2
\]
Enter the answer as in a calculator:

EXAMPLE: \(4.567 + 2.431 \times x^4 - 0.310 \times x^2 \)

21. [1pt] The decomposition of nitrous oxide

\[
2\text{N}_2\text{O}(g) \rightarrow 2\text{N}_2(g) + \text{O}_2(g)
\]
is catalyzed by \(\text{NO}(g) \). The following mechanism has been proposed to explain the experimental rate law.

\[
(1) \text{N}_2\text{O} + \text{NO} \rightarrow \text{NO}_2 + \text{N}_2 \quad \text{slow} \\
(2) 2\text{NO}_2 \rightarrow 2\text{NO} + \text{O}_2 \quad \text{fast}
\]
Write the rate law for the above chemical reaction derived from the proposed mechanism. Enter the answer as in a calculator:

EXAMPLE: \(k \times x^m \times y^n \)

Where:
\(k = \text{rate constant} \)
\(x = \text{NO} \)
\(y = \text{NO}_2 \)
\(z = \text{N}_2 \)
\(u = \text{N}_2\text{O} \)
\(v = \text{O}_2 \)
Remember that \(m, n, \text{etc.} \) can have non-integer or negative values.

(Over)
Schroedinger, Erwin

22. [1pt] A frictionless, massless pulley is attached to the ceiling, in a gravity field $g = 9.81 \, m/s^2$.

Mass M_b is greater than mass M_a. The tensions T_x, T_y, T_z, and the constant g are magnitudes. (For each statement select T-True, F-False, G-Greater than, L-Less than, or E-Equal to, For example, GFLLEG)

A) The center-of-mass accelerates.
B) The magnitude of the acceleration of M_a is ... the magnitude of the acceleration of M_b.
C) $(M_a)g + (M_b)g$ is ... T_z
D) $T_x + T_y$ is ... T_z
E) T_x is ... T_y
F) T_x is ... $(M_b)g$

23. [1pt] A quality control engineer counts the number of olives in a sample of jars. A histogram of the number of jars versus the number of olives is shown below. (Vertically: number of jars (0 to 9). Horizontally: number of olives in these jars (57 to 67).

Calculate the probability that a randomly selected jar will have fewer than 61 olives.

Department of Physics and Astronomy, SUNY Geneseo ……………………….. CAPA@…